Project Description
Los proyectos de ingeniería de fotogrametría es la disciplina encargada de calcular las dimensiones y posiciones de los objetos en el espacio, a partir de medidas realizadas sobre fotografías. Trabajando con una fotografía se puede obtener información bidimensional. En fotogrametría se trabaja con dos fotos en las que existe una zona común. Del proceso de cruzar la zona de solape se puede obtener visión estereoscópica, esto es, información tridimensional.
La fotogrametría más común es la aérea y consiste en la utilización de fotogramas aéreos de eje vertical tomados desde un avión que sobrevuela la zona de estudio, recubriendo el territorio con fotogramas que se solapen tanto longitudinal como transversalmente. Posteriormente, a partir de estos fotogramas y realizando una serie de procesos se pueden trazar mapas.
Una ortofotografía es una imagen de una zona de la superficie terrestre, en la que un alto porcentaje de los elementos presentan una escala homogénea, en teoría libre de errores y deformaciones, y aproximadamente con la misma validez de un plano cartográfico, en el aspecto de precisión.
La aerofotografía cruda, presenta deformaciones y distorsiones de los objetos del paisaje, causados por desplazamientos debidos al relieve, la perspectiva desde la cámara, la altura de toma, la velocidad a la que se mueve la cámara y distorsiones propias de la lente de la cámara fotogramétrica, entre otras.
Para obtener una ortofotografía se aplican correcciones digitales a la aerofotografía cruda, con el objeto de llevar la imagen a una proyección ortogonal libre de los errores arriba mencionados, y en la que es posible realizar mediciones precisas; igualmente se lleva a un plano de referencia local. A este proceso de corrección digital se le llama ortorectificación.
Teniendo en cuenta lo anterior, en una ortofotografía se combinan las características de detalle de una fotografía aérea con propiedades geométricas similares a las de un plano cartográfico fotogramétrico; en consecuencia en una ortofoto es posible medir distancias y ángulos, con precisiones similares a las de los planos vectoriales.